
200

Chapter 8

Objects and Classes

The style of programming we have seen so far is called procedural programming.
This was the first programming paradigm, developed in the 1950’s and 1960’s
alongside the growth of hardware technology. In this chapter we look at object-
oriented programming, a more modern style of coding that was developed in
the 1970’s and 1980’s. The motivation for the development of object-oriented
programming was the repeated failure of programmers to eliminate bugs from
large programs written in the procedural style. Object-oriented programming
is not more powerful than procedural programming any program that can be
written in one style can be written in the other. However, in many situations
it is easier to write correct programs in the object-oriented style. In Chapter 8
we will look at programs that use graphics, animation and simulations, and you
will see that all of these lend themselves naturally to the object-oriented style.

201

202 CHAPTER 8. OBJECTS AND CLASSES

8.1 Concepts

There is some terminology that you must understand to get started on writing
object-oriented programs. The terminology is not difficult, but it is uses the
building blocks we have already seen in a new way. Here are the basic pieces.

A class is a structure that holds both data and functions for manipulating
that data. We have seen some classes before without calling them classes. For
example, Python has a class called List . A list holds sequences of whatever data
you give it, and it has functions, or methods, such as append() for manipulating
that data. The class itself is a pattern. It says what kinds of data and what
kinds of functionality instances of the class will have. You can construct specific
instances of a class, which are called objects. For example, we might have a class
Person. This would describe the data and functionality needed to represent
people. Each object of this class would represent one individual person.

Like all data, the data in an object is stored in variables. There are two
types of variables in classes: instance variables andclass variables. Each object
of a class has its own copy of each of the instance variables, so each object can
have different data stored in the instance variables. For example, in our Person
class there might be an instance variable to hold a persons name. Each object
of the class will represent a different person, and so each will have its own name.
The class variables are shared by all objects of the class; there is only one copy
of the class variables, and it is visible to all objects of the class. Our Person class
might have a class variable to hold the population size. The number of people
in existence is the same regardless of which person we ask for this number. We
refer to the instance variables of the class through objects of the class using a
dot-notation: <object name>.<variable name>. For example, if x is an object
of class Person we would refer to the name instance variable as x.name. We refer
to the class variables through the class itself. Person.population might be the
class variable that represent the size of the Person population.

Objects have their own functions for manipulating their data. We call the
functions contained in an object its methods. If class Person has a GetOlder()
method that adds one to the age of a person, and if x is an object of this class,
we would tell object x to get older with the code

x . GetOlder ()

You might think of x.GetOlder() as a command to object x to increase its age
variable.

As we said, each object of a class has its own copies of the instance variables
and methods of the class. The class definition needs some way to refer to an
individual object’s data and methods. The word self is used for this. This
word only appears in class definitions; it always refers to the current object.
Every method of every class has self as its first argument. For example, the
GetOlder() method has header

def GetOlder (s e l f) :

8.1. CONCEPTS 203

When we call this method on a specific object, as in x.GetOlder(), the object
x is passed as the argument for self . We might have a method SetAge() that
would set the persons age to a specific value. This would have header

def SetAge (s e l f , myAge) :

and would be called as in x.SetAge(19). All methods have self as their first
argument; you never explicitly pass a value for self , but the system substitutes
the object whose method you are invoking for this argument.

The word self is used for similar reasons in references to instance variables
within the methods of a class. self .age is the age variable for whatever object
is being referenced. For example, here is the complete code for the SetAge()
and GetOlder() methods:

def SetAge (s e l f , myAge) :
s e l f . age = myAge

def GetOlder (s e l f) :
s e l f . age = s e l f . age + 1

If we call x.SetAge(19), then the object stored in variable x is passed for the
self argument in method SetAge(). Then self .age, which is the value of the
age instance variable of object x, is set to 19. This notation probably seems
cumbersome at first, but with a little practice it will begin to seem natural:
x. foobar() runs method foobar() on object x.

Every class has a specific method called a constructor that is run when a new
object of that class is created. The purpose of a constructor is to give initial
values to the instance variables of the class. If the constructor has arguments,
values for those arguments must be provided when a new object is constructed.
Constructors in Python all have the name init (). Of course, since con-
structors are methods they all have self as their first argument. For example,
we might want the constructor for the Person class to give a name to the new
person. The constructor that does this is

def i n i t (s e l f , myName) :
s e l f . name = myName
s e l f . age = 0

Remember that the constructor should initialize all of the instance variables
of the class, even those that are not mentioned in the constructor’s arguments.
If we fail to initialize the variable then it doesn’t exist. For example, if the
constructor for class Person omits the line

s e l f . age = 0

then new persons will not have an age variable. If other methods, such as a
Print() method, refer to the age of the person and the age variable doesn’t
exist, our program will crash when these methods are called.

We construct objects of a class by using the class name as a function. The
function that is actually called is the init () method of this class, so Python

204 CHAPTER 8. OBJECTS AND CLASSES

expects us to provide all of the arguments (except self) of this method. For
example, the init () method above for class Person needs a string for the
name, so we could construct a new person with

x = Person (”bob”)

Here, finally, is the complete code for a simple program that uses classes.
This defines the class Person that we have been discussing. The main() function
of the program makes use of this class definition to construct several persons,
set the age variables, and print out their information. Note that the main()
function is simple and intuitive. This is typically the case with object-oriented
programs the hard work in such programs is implementing the classes; once that
is accomplished they are usually easy to use. Note also that classes can be used
in more than one program. One of the goals of object-oriented programming is
to make reusable classes that can be written carefully and then used in a wide
range of applications. A programmer doesn’t need to know the details of how
a class is implemented in order to use it. All the programmer needs to know is
what data the class holds and what methods it offers. The List and Dictionary
classes in Python are illustrations of this. We have used these classes to write
many programs without any knowledge of how the classes are implemented.
These classes are very powerful. It is the object-oriented paradigm that allows
us to separate the implementation of the classes from their use.

8.1. CONCEPTS 205

class Person :
def i n i t (s e l f , myName) :

s e l f . name = myName
s e l f . age = 0

def SetAge (s e l f , myAge) :
s e l f . age = myAge

def GetOlder (s e l f) :
s e l f . age = s e l f . age + 1

def P r i n t (s e l f) :
print (”%s i s %d y e a r s o l d . ”%(s e l f . name , s e l f . age))

def main () :
x = Person (”bob”)
y = Person (” s u z i e ”)
z = Person (” j o e ”)

x . SetAge (57)
x . GetOlder ()
x . GetOlder ()
x . P r i n t ()

y . P r i n t ()

main ()

Program 8.1.1: A complete object-oriented program

